Biochemical characterization and pharmacological properties of a phospholipase A2 myotoxin inhibitor from the plasma of the snake Bothrops asper.
نویسندگان
چکیده
A protein that neutralizes the biological activities of basic phospholipase A2 (PLA2) myotoxin isoforms from the venom of the snake Bothrops asper was isolated from its blood by affinity chromatography with Sepharose-immobilized myotoxins. Biochemical characterization of this B. asper myotoxin inhibitor protein (BaMIP) indicated a subunit molecular mass of 23-25 kDa, an isoelectric point of 4, and glycosylation. Gel-filtration studies revealed a molecular mass of 120 kDa, suggesting that BaMIP possesses an oligomeric structure composed of five 23-25 kDa subunits. Functional studies indicated that BaMIP inhibits the PLA2 activity of B. asper basic myotoxins I and III, as well as the myotoxicity and edema-forming activity in vivo and cytolytic activity in vitro towards cultured endothelial cells, of all four myotoxin isoforms (I-IV) tested. Sequence analysis of the first 63 amino acid residues from the N-terminus of BaMIP indicated more than 65% sequence similarity to the PLA2 inhibitors isolated from the blood of the crotalid snakes Trimeresurus flavoviridis and Agkistrodon blomhoffii siniticus. These inhibitors also share sequences similar to the carbohydrate-recognition domains of human and rabbit cellular PLA2 receptors, suggesting a common domain evolution among snake plasma PLA2 inhibitors and mammalian PLA2 receptors. Despite this similarity, this is the first description of a natural anti-myotoxic factor from snake blood.
منابع مشابه
Isolation and characterization of a myotoxic phospholipase A2 from the venom of the arboreal snake Bothriechis (Bothrops) schlegelii from Costa Rica.
A new myotoxic phospholipase A2 was isolated from the venom of the arboreal snake Bothriechis schlegelii (formerly Bothrops schlegelii) from Costa Rica, by ion-exchange chromatography on CM-Sephadex. B. schlegelii myotoxin I is a basic protein (pI > 9.3) with a subunit molecular weight of 15 kDa, which migrates as a dimer in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonred...
متن کاملMolecular cloning and biochemical characterization of a myotoxin inhibitor from Bothrops alternatus snake plasma.
Phospholipases A(2) (PLA(2)s) are important components of Bothrops snake venoms, that can induce several effects on envenomations such as myotoxicity, inhibition or induction of platelet aggregation and edema. It is known that venomous and non-venomous snakes present PLA(2) inhibitory proteins (PLIs) in their blood plasma. An inhibitory protein that neutralizes the enzymatic and toxic activitie...
متن کاملEffects of Bothrops asper Snake Venom on Lymphatic Vessels: Insights into a Hidden Aspect of Envenomation
BACKGROUND Envenomations by the snake Bothrops asper represent a serious medical problem in Central America and parts of South America. These envenomations concur with drastic local tissue pathology, including a prominent edema. Since lymph flow plays a role in the maintenance of tissue fluid balance, the effect of B. asper venom on collecting lymphatic vessels was studied. METHODOLOGY/PRINCI...
متن کاملBiochemical Characterization, Action on Macrophages, and Superoxide Anion Production of Four Basic Phospholipases A2 from Panamanian Bothrops asper Snake Venom
Bothrops asper (Squamata: Viperidae) is the most important venomous snake in Central America, being responsible for the majority of snakebite accidents. Four basic PLA2s (pMTX-I to -IV) were purified from crude venom by a single-step chromatography using a CM-Sepharose ion-exchange column (1.5 × 15 cm). Analysis of the N-terminal sequence demonstrated that pMTX-I and III belong to the catalytic...
متن کاملTwo phospholipase A2 inhibitors from the plasma of Cerrophidion (Bothrops) godmani which selectively inhibit two different group-II phospholipase A2 myotoxins from its own venom: isolation, molecular cloning and biological properties.
Myotoxic phospholipases A(2) (PLA(2)s; group II) account for most of the muscle-tissue damage that results from envenomation by viperid snakes. In the venom of the Godman's viper (Cerrophidion godmani, formerly Bothrops godmani), an enzymically active PLA(2) (myotoxin I) and an inactive, Lys-49 variant (myotoxin II) induce extensive muscle damage and oedema. In this study, two distinct myotoxin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 326 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1997